
AAAI 2025 Tutorial T04
Time: 2025-02-25 8:30-12:30

Location: Room 118A

Part II: Foundation Models meet Physical Agents

AAAI Tutorial: Foundation Models Meet Embodied Agents

Physical Agents Overview

2

Physical Agents Overview

3

Policy

Wash the plate Robot Actions

q Policy: 𝜋 𝑜, 𝑔 → 𝑎
q 𝑜: observation (images, robot proprioception, tactile, ...)
q 𝑔: goal (natural language for this tutorial)
q 𝑎: robot control commands

The Robot Architecture

4

observations

goal

perception state estimation

interpretation

planner

execution monitor

controller

action

The Robot Architecture

5

observations

goal

perception state estimation

interpretation

planner

execution monitor

controller

action

Perception + state estimation:

Recover state from past observations

The Robot Architecture

6

observations

goal

perception state estimation

interpretation

planner

execution monitor

controller

action

Goal interpretation

Understanding human intentions

The Robot Architecture

7

observations

goal

perception state estimation

interpretation

planner

execution monitor

controller

action

Planner (Usually < 20 Hz)

Generate control commands
e.g., target position for the robot

The Robot Architecture

8

observations

goal

perception state estimation

interpretation

planner

execution monitor

controller

action

ExeMon + Controller (Usually > 1000 Hz)

Control the robot and handles
unexpected situations (e.g., safety)

The Robot Architecture

9

observations

goal

perception state estimation

interpretation

planner

execution monitor

controller

action

The Policy
𝜋 𝑜, 𝑔 → 𝑎

Key Questions Physical Agents

10

q How to design and build the “state”
Usually involves computer vision and signal processing techniques
Partial observability is very salient

q How to design and build the “action”
Usually involves both discrete and continuous parameters

q How to design and build policies (high-level and low-level)
High-level: primitive functions such as pick and place
Low-level: primitive control commands such as target position and velocity

q How to design and build transition models and reward functions
Ground-truth is unknown
Reward functions are usually hard to define manually
Reward functions also need to consider human preferences

From Observations to States

11

q How to design and build the “state”
Usually involves computer vision and signal processing techniques
Partial observability is very salient

q In this tutorial, we will focus on obtaining representations about “objects”

Vision Techniques

12

Segmentation Detection

VLMs
Image-to-3D

Tracking

3D Scene Understanding from Images

q Accurate 3D scene understanding is crucial for reliable manipulation in
real environments

13

Grasping Collision Avoidance Reliable Placing

From Vision Models to Vision Foundation Models

14

q Different tasks were usually studied individually
q Different tasks rely on different datasets (e.g., fixed vocabulary object

detection)
q Trend: Training on very large datasets for broad coverage

q Although they are called “vision FM” but they are designed to solve one
particular task

Input: RGBD Captures

15

Object Detection

16

q Three commonly used object detection
modules:

q Category-agnostic: Segment-Anything
q Category-specific: Mask-RCNN
q Category-specific and open-vocabulary:

Grounding-DINO

Need to know
categories to be
detected

Kirillov et al., “Segment Anything,” ICCV, 2023
He et al., “Mask R-CNN,” ICCV, 2017.
Liu et al., “Grounding DINO: Marrying DINO with Grounded
Pre-Training for Open-Set Object Detection,” arXiv, 2023.

Image to 3D Models

17

q Many existing models: RGB -> 3D
q Zero-1-to-3, InstantMesh, Instant3D

q Caveat: Usually they don’t work well with
partial object images (need inpainting)

q Many methods work better if we know
the name of the object

Liu et al., “Zero-1-to-3: Zero-shot One Image to 3D Object,” ICCV, 2023.
Xu et al., “InstantMesh: Efficient 3D Mesh Generation from a Single
Image with Sparse-view Large Reconstruction Models,” arXiv, 2024.
Li et al., “Instant3D: Fast Text-to-3D with Sparse-View Generation and
Large Reconstruction Model,” arXiv, 2023.

3D Back-Projection

q Shape completion methods usually only work with RGB images
q So they don’t know the actual “size” of the 3D shape
q After obtaining the mesh for an object, we need to back-project it
q Keyword: pointcloud registration

18

Scene Captured by the RobotReconstructed Scene

SceneComplete

SceneComplete takes a single-view RGB-D input
and constructs a complete, segmented, 3D model of a scene

Agarwal et al., “SceneComplete: Open-World 3D Scene Completion in Complex
Real World Environments for Robot Manipulation,” arXiv, 2024

Object Tracking

q While the object is being moved, we need
to keep track of it!

q Otherwise we won’t know object
correspondences across states

20

q Three commonly used tracking modules:
q Mask tracker: Segment-Anything 2

Ravi et al., “SAM 2: Segment Anything in Images and Videos,” ICLR, 2025.
Doersch et al., “TAPIR: Tracking Any Point with per-frame Initialization and
temporal Refinement,” arXiv, 2023.
Karaev et al., “CoTracker: It is Better to Track Together,” ECCV, 2024.
Wen et al., “FoundationPose: Unified 6D Pose Estimation and Tracking of Novel
Objects,” CVPR, 2024.

Object Tracking

q While the object is being moved, we need
to keep track of it!

q Otherwise we won’t know object
correspondences across states

21

q Three commonly used tracking modules:
q Mask tracker: Segment-Anything 2
q Point tracker: Track-Any-Point,

CoTracker2

Ravi et al., “SAM 2: Segment Anything in Images and Videos,” ICLR, 2025.
Doersch et al., “TAPIR: Tracking Any Point with per-frame Initialization and
temporal Refinement,” arXiv, 2023.
Karaev et al., “CoTracker: It is Better to Track Together,” ECCV, 2024.
Wen et al., “FoundationPose: Unified 6D Pose Estimation and Tracking of Novel
Objects,” CVPR, 2024.

Object Tracking

q While the object is being moved, we need
to keep track of it!

q Otherwise we won’t know object
correspondences across states

22

q Three commonly used tracking modules:
q Mask tracker: Segment-Anything 2
q Point tracker: Track-Any-Point,

CoTracker2
q Pose tracker: Foundation Pose

Ravi et al., “SAM 2: Segment Anything in Images and Videos,” ICLR, 2025.
Doersch et al., “TAPIR: Tracking Any Point with per-frame Initialization and
temporal Refinement,” arXiv, 2023.
Karaev et al., “CoTracker: It is Better to Track Together,” ECCV, 2024.
Wen et al., “FoundationPose: Unified 6D Pose Estimation and Tracking of Novel
Objects,” CVPR, 2024.

Summary

q Many 2D and 3D computer vision techniques are needed to build an object-
centric state representation

q Now we have better and better foundation models for ALL of them
q However, we still don’t have a “single” foundation model for all tasks
q Moreover, many models are not tuned for robotics purposes
q Different planning and control algorithms may need different levels of details

23

Advanced: Spatial Localization and Mapping

24

Reinke et al., “LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry
for Real-Time 3D Mapping,” R-AL, 2022.

Advanced: Object-Centric SLAM

25

Maggio et al., “Clio: Real-time Task-Driven Open-Set 3D Scene Graphs,” R-AL, 2024.

Advanced: Segmentation Under-Specification

26

q Depending on the task, you
need to segment objects at
different granularities

Advanced: Segmentation Uncertainty

27

q Interaction is usually needed to dis-ambiguate

Fang et al., “Embodied Uncertainty-Aware Object Segmentation,” IROS, 2024.

Many Other Frontier Topics in Perception

28

q Depth sensor denoising
q Articulated object perception
q Active sensing of physical properties
q SLAM with dynamic objects
q Task-driven representation of uncertainty

From States to Actions: The Hierarchy

29

q Most systems involve a two-level design: high-level and low-level

Low-Level Action Interface

30

q Lowest-Level Action: how much current should I apply?
q Usually run at >1000Hz

q “Low-Level” Action:
target position / velocity for the robot joints
target position / velocity for the robot end-effector

Low-Level Action Interface

31

Joint

End-Effector

Figure from Franka Research 3 Manual

q High-Level Actions are usually object-centric
q Different algorithms may use different granularities

High-Level Action Interface

32

action grasp(object):
grasp_pos = find_grasp(object)
traj = find_trajectory(current_pos(), grasp_pos)
execute(traj)
close_gripper()

action place(object, surface):
place_pos = find_place(object, surface)
traj = find_trajectory(current_pos(), place_pos)
execute(traj)
open_gripper()

Integrated Low-Level and High-Level Actions

33

Subgoal Constraints:
holding the target

Path Constraints
in joint limits
no collision

Skill:
pickup

action pickup(a: object):
find t1, s1:

s1 = dynamics(t1)
collision_free(t1)
holding_target(s1, a)

Integrated Low-Level and High-Level Actions

34

Subgoal1:
holding the target

Path Constraints
in joint limits
no collision

Subgoal2
plate on the rack

given 𝒔𝟎
find 𝒕𝟏, 𝒕𝟐, 𝒔𝟏, 𝒔𝟐
minimize |𝑡$| + |𝑡%| s.t.

dynamics(𝑠!, 𝑡", 𝑠")
dynamics(𝑠", 𝑡#, 𝑠#)
collision-free(𝑡")
collision-free(𝑡#)
holding-target(𝑠")
holding-target(𝑡#)
target-on-rack(𝑠#)

Summary

35

q Low-level action: joint and end-effector commands
q High-level action : object-centric commands
q Integrated low-level and high-level action: usually based on constrained

optimization frameworks

Advanced: Execution Monitoring

36

q How to react to human perturbation and other endogenous events in a multi-
level system?

q Simple solution, but usually not scalable: perform action selection at all
layers at a high frequency

